PREFACE
This book is the second edition of a text designed for undergraduate courses in signals and systems. While such courses are frequently found in electrical engineering curricula, the concepts and techniques that form the core of the subject are of fundamental importance in all engineering disciplines. In fact, the scope of potential and actual applications of the methods of signal and system analysis continues to expand as engineers are confronted with new challenges involving the synthesis or analysis of complex processes. For these reasons we feel that a course in signals and systems not only is an essential element in an engineering program but also can be one of the most rewarding, exciting, and useful courses that engineering students take during their undergraduate education.
Our treatment of the subject of signals and systems in this second edition maintains the same general philosophy as in the first edition but with significant rewriting, restructuring, and additions. These changes are designed to help both the instructor in presenting the subject material and the student in mastering it. In the preface to the first edition we stated that our overall approach to signals and systems had been guided by the continuing developments in technologies for signal and system design and implementation, which made it increasingly important for a student to have equal familiarity with techniques suitable for analyzing and synthesizing both continuous-time and discrete-time systems. As we write the preface to this second edition, that observation and guiding principle are even more true than before. Thus, while students studying signals and systems should certainly have a solid foundation in disciplines based on the laws of physics, they must also have a firm grounding in the use of computers for the analysis of phenomena and the implementation of systems and algorithms. As a consequence, engineering curricula now reflect a blend of subjects, some involving continuous-time models and others focusing on the use of computers and discrete representations. For these reasons, signals and systems courses that bring discrete-time and continuous-time concepts together in a unified way play an increasingly important role in the education of engineering students and in their preparation for current and future developments in their chosen fields.
It is with these goals in mind that we have structured this book to develop in parallel the methods of analysis for continuous-time and discrete-time signals and systems. This approach also offers a distinct and extremely important pedagogical advantage. Specifically, we are able to draw on the similarities between continuous- and discrete-time methods in order to share insights and intuition developed in each domain. Similarly, we can exploit the differences between them to sharpen an understanding of the distinct properties of each. In organizing the material both originally and now in the second edition, we have also considered it essential to introduce the student to some of the important uses of the basic methods that are developed in the book. Not only does this provide the student with an appreciation for the range of applications of the techniques being learned and for directions for further study, but it also helps to deepen understanding of the subject. To achieve this goal we include introductory treatments on the subjects of filtering, communications, sampling, discrete-time processing of continuous-time signals, and feedback. In fact, in one of the major changes in this second edition, we have introduced the concept of frequency-domain filtering very early in our treatment of Fourier analysis in order to provide both motivation for and insight into this very important topic. In addition, we have again included an up-to-date bibliography at the end of the book in order to assist the student who is interested in pursuing additional and more advanced studies of the methods and applications of signal and system analysis.
The organization of the book reflects our conviction that
美國麻省理工學院電氣與計算機科學系Ford教授,該校電子學研究實驗室(RLE)首席研究員。美國國家工程院院士,IEEE會士。研究興趣為通用領域的信號處理及應用,曾因出色的科研和教學工作多次獲獎。另著有Discrete-Time Signal Processing和Signals, Systems and Inference。<BR>美國麻省理工學院電氣與計算機科學系Ford教授,該校電子學研究實驗室(RLE)首席研究員。美國國家工程院院士,IEEE會士。研究興趣為通用領域的信號處理及應用,曾因出色的科研和教學工作多次獲獎。另著有Discrete-Time Signal Processing和Signals, Systems and Inference。