本書涵蓋了一系列有監督的機器學習方法,包括基礎方法(k-NN、決策樹、線性和邏輯回歸等)和高級方法(深度神經網絡、支持向量機、高斯過程、隨機森林和提升等),以及常用的無監督方法(生成模型、k-均值聚類、自動編碼器、主成分分析和生成對抗網絡等)。所有方法都包含詳細的解釋和偽代碼。通過在方法之間建立聯系,討論一般概念(例如損失函數、最大似然、偏差-方差分解、核和貝葉斯方法),同時介紹常規的實用工具(例如正則化、交叉驗證、評估指標和優化方法),本書始終將關注點放在基礎知識上。最后兩章為解決現實世界中有監督的機器學習問題和現代機器學習的倫理問題提供了實用建議。