“中子衍射技術及其應用”是基于材料中物質對入射中子的吸收、散射和衍射等現象,對物質(材料)晶體結構和磁結構研究的學科分支。姜傳海、楊傳錚編著的 《中子衍射技術及其應用》分為13章。 包括晶體結構和磁結構基礎,中子射線及其與物質的交互作用,中子衍射的運動學理論,中子衍射散射實驗方法,晶體結構的測定,自旋結構和磁結構的測定,物相 衍射分析,材料殘余應力衍射測定,材料織構的衍射測定,中子小角衍射散射的應用,新型材料的衍射散射分析,物質動態結構的非彈性散射研究以及中子衍射散射 的工業應用。 《中子衍射技術及其應用》可供固體物理、材料科學與工程、化學與化工、生物學與生物工程和醫藥與藥物工程等專業的高校及科研院所的教師、研究生、高年級本 科生閱讀,也可供從事衍射分析的專業人員參考。
姜傳海、楊傳錚編著的《中子衍射技術及其應用》的特色是專業讀物和高級科普相結合。所謂專業讀物是指本書可供從事(中子和X射線)衍射實驗工作的專業人員工作中參考;所謂高級科普是指本書可供欲在科學和工程技術中使用中子衍射散射技術的研究人員閱讀。
全書1/3篇幅講述基礎——晶體結構和磁結構基礎、中子射線及其與物質的交互作用、中子衍射的運動學理論、中子衍射散射實驗方法(第1-4章);重點是介紹中子衍射散射技術的應用(第5-13章)。晶體結構和磁性結構測定分兩章(第5和第6章)來討論;以后每章為一個應用專題,如物相分析、織構、應力、小角散射、新型材料分析、動力學結構和工業應用等。
姜傳海,男,1963年9月生,漢族,教授,博士生導師。1983年7月畢業于蘭州大學物理系,1983年8月~1995年8月在哈爾濱汽輪機廠材料研究 所工作,1995年9月~2000年2月在哈爾濱工業大學材料系攻讀博士學位,2001年3月~2003年11月在上海交通大學材料學院從事博士后工 作,2001年12月至今在上海交通大學材料學院從事材料表征、教學和實驗技術的開發研究。2007年在法國國立高等工程技術學院(ENSAM)做高級訪 問學者。 現擔任中國機械工程學會材料分會理事及殘余應力專業委員會副主任兼秘書長、中國機械工程學會失效分析分會理事及噴丸技術專業委員會常務副主任、中國機械工 程學會理化檢驗分會理事、中國晶體學會理事及粉末衍射專業委員會委員、中國物理學會X射線衍射專業委員會委員、上海市物理學會X射線與同步輻射專業委員會 主任等。 開設有材料組織結構表征、X射線衍射原理和技術、材料近代物理測試方法、不完整晶體結構及其分析方法、同步輻射技術及其應用課程。 共主持國家、省部級及大中型企業科研項目50余項。發表論文200余篇,被SCI及EI檢索150余篇。 著有《材料的射線衍射和散射分析》、《X射線衍射技術及其應用》和《材料組織結構表征》。 楊傳錚,男,1939年8月生,侗族,教授。1963年6月畢業于上海科學技術大學金屬物理專業,1963年7月~1988年9月在中國科學院上海冶金研 究所從事材料物理和X射線衍射及電子顯微鏡應用方面的研究,1988年10月~1993年5月先后應美國EXXON研究與工程公司和美國Biosym技術 有限公司邀請,在美國長島Brookhaven國家實驗室從事材料的同步輻射和中子衍射散射合作研究,1993年6月~1999年8月在上海大學物理系任 教,現已退休。 先后開設激光光譜學、物質結構研究的理論與方法、同步輻射應用基礎和應用物理前沿系列講座等研究生課程。在各種期刊雜志上發表相關論文60余篇。著有《物 相衍射分析》和《晶體的射線衍射基礎》,“材料科學中的晶體結構和缺陷的X射線研究”獲1982年國家自然科學四等獎(排名第二),“遙控式X射線貌相 機”獲1984年上海市重大科研成果三等獎(排名第一)。 曾任中國物理學會X射線衍射專業委員會委員(1982年~1998年),第一屆委員兼秘書長(1982年~1986年),上海市物理學會X射線與同步輻射 專業委員會第一屆委員兼秘書長(1982年~1992年),上海市金屬學會理事兼材料專業委員會副主任,現任上海市物理學會X射線與同步輻射專業委員會顧 問。 2004年3月至今,對納米材料和電池活性物質及電極過程進行大量研究,發表論文40余篇。著有《同步輻射X射線應用技術基礎》、《納米材料的X射線分 析》、《材料的射線衍射和散射分析》和《X射線衍射技術及其應用》。
前言
第1章 晶體結構和磁結構基礎
1.1 晶體點陣
1.1.1 點陣概念
1.1.2 晶胞、晶系
1.1.3 點陣類型
1.2 晶體的宏觀對稱性和點群
1.2.1 宏觀對稱元素和宏觀對稱操作
1.2.2 宏觀對稱性和點群
1.3 晶體的微觀對稱性和空間群
1.3.1 微觀對稱要素與對稱操作
1.3.2 230種空間群
1.4 倒易點陣
1.4.1 倒易點陣概念的引入
1.4.2 正點陣與倒易點陣間的幾何關系
1.5 晶體極射赤面投影
1.5.1 晶體極射赤面投影原理
1.5.2 標準極圖
1.6 晶體的結合類型
1.6.1 離子結合
1.6.2 共價結合
1.6.3 金屬結合
1.6.4 分子結合
1.6.5 氫鍵結合
1.6.6 混合鍵晶體
1.7 磁對稱性和磁結構
1.7.1 磁性原子的自旋結構
1.7.2 磁點陣
1.7.3 磁點群
1.7.4 磁空間群
1.7.5 磁性結構
主要參考文獻
第2章 中子射線及其與物質的交互作用
第3章 中子衍射的運動學理論
第4章 中子衍射散射實驗方法
第5章 晶體結構的測定
第6章 自旋結構和磁結構的測定
第7章 物相衍射分析
第8章 材料殘余應力衍射測定
第9章 材料織構的衍射測定
第10章 中子小角衍射散射的應用
第11章 新型材料的衍射散射分析
第12章 物質動態結構的非彈性散射研究
第13章 中子衍射散射的工業應用
附錄
《現代物流基礎叢書》已出版書目
第1章晶體結構和磁結構基礎
1.1晶體點陣
1.1.1點陣概念
固體分為晶體和非晶體,兩者的主要差別是是否具有內部結構的周期性和對稱性,晶體(結晶體)有內部結構的周期性和對稱性;非晶體無這種周期性和對稱性,但有短程的局域結構.為了集中描述晶體內部原子排列的周期性,把晶體中按周期重復的那一部分原子團抽象成一個幾何點,由這樣的點在三維空間排列構成一個點陣,點陣結構中每一個陣點代表的具體的原子、分子或離子團稱為結構基元,故晶體結構可表示為晶體結構=點陣+結構基元圖1.1表示晶體結構和點陣的關系.所謂結構基元就是重復單元,如原子、原子團、分子等.如果把重復單元想象為一個幾何點,并按結構周期排列,這就是點陣,根據點陣的性質,把分布在同一直線上的點陣稱為直線點陣或一維點陣,分布在同一平面中點陣稱為平面點陣或二維點陣,分布在三維空間的點陣稱為空間點陣或三維點陣.圖1.2給出了一維、二維和三維點陣的示意圖.在直線點陣中,若將連接兩個陣點的單位矢量a進行平移,必指向另一陣點,而矢量的長度jaj=a稱為點陣參數.平面點陣可分解為兩組平行的直線點陣,并選擇兩個不相平行的單位矢量a和b,可把平面點陣劃分為無數并置的平行四邊形單位,點陣中的各點都位于平行四邊形的頂點處,矢量a和b的長度jaj=a、jbj=b及其夾角°,稱為平面點陣參數.空間點陣可分解為兩組平行的平面點陣,并可選擇三個不相平行的單位矢量a、b和c,將空間點陣劃分成并置的平行六面體,而點陣中各點都位于各平行六面體的頂點.矢量a、b和c的長度a、b、c及其相互間的夾角°、ˉ和?,稱為點陣參數.晶體的三個坐標軸方向X、Y、Z或稱格子線方向,通常選擇右手定則,它們分別與a、b和c平行.必須指出的是,晶體的空間點陣只不過是晶體中原子、離子或分子所占據的位置在三維空間的重復平移而已,因此點陣這個詞絕不應該用來代表由原子堆垛成的真實晶體的結構.
1.1.2晶胞、晶系
根據晶體內部結構的周期性,劃分出許多大小和形狀完全等同的平行六面體,在晶體點陣中,這些確定的平行六面體稱為晶胞(或稱單胞),用來代表晶體結構的基本重復單元.這種平行六面體可以是晶體點陣中不同結點連接而行成的形狀大小不同的各種晶胞,顯然這種分割方法有無窮多種,但在實際確定晶胞時,應遵守布拉維(Bravais)法則,即選擇晶胞時應與宏觀晶體具有相同的對稱性、最多的相等晶軸長度(a、b、c)、晶軸之間的夾角(?、ˉ、°)呈直角數目最多,滿足上述條件時所選擇的平行六面體的體積最小,這樣在三維點陣中選擇三個基矢a、b和c它們間的夾角?、ˉ和°,按它們的特性把晶體分為七大晶系,即立方、六方、四方、三方(又稱菱形)、正交、單斜、三斜.立方晶系對稱性最高,是高級晶系(有一個以上高次軸);六方、四方、三方(又稱菱形)屬中級晶系(只有一個高次軸);正交、單斜、三斜屬低級晶系(沒有高次軸),三斜晶系對稱性最低.
1.1.3點陣類型
單位晶胞中,若只在平行六面體頂角上有陣點,即一個晶胞只分配到一個陣點時,則稱它為初基晶胞.若在平行六面體的中心或面的中心含有陣點,即一個晶胞含有兩個以上的陣點時,稱為非初基晶胞.初基晶胞構成的點陣稱為簡單點陣,記為P.非初基晶胞構成的點陣根據頂角外的陣點是在體心、面心和底面心而分別稱為體心、面心和底心點陣,記為I、F、C.用數學方法可以證明只存在7種初基和7種非初基類型,稱為布拉維點陣,因是通過平移操作而得,故又稱為平移群或點陣類型,如圖1.3所示.表1.1列出了晶系劃分和點陣類型的對應關系.
1.2晶體的宏觀對稱性和點群
晶體的宏觀外形可同時存在多種點對稱元素,如圖1.4所示的巖鹽晶體,同時具有一個對稱中心,三個4次軸,四個3次軸,若干個2次軸和若干個鏡面.晶體的對稱元素相互結合,就構成了晶體的各種宏觀對稱性.
1.2.1宏觀對稱元素和宏觀對稱操作