《數(shù)字信號處理(第2版)(英文版)》系統(tǒng)地闡述了數(shù)字信號處理所涉及的信號與系統(tǒng)分析和系統(tǒng)設(shè)計的基本理論、基本分析與設(shè)計方法、基本算法和處理技術(shù)。《數(shù)字信號處理(第2版)(英文版)》共10章,主要內(nèi)容包括:離散時間信號與系統(tǒng)的基本概念,離散時間信號與系統(tǒng)的變換域分析,包括z變換和離散時間傅里葉變換、連續(xù)時間信號的抽樣與重建,離散傅里葉變換及其快速算法(fft),數(shù)字濾波器實現(xiàn)的基本結(jié)構(gòu),iir和fir數(shù)字濾波器的設(shè)計原理與基本設(shè)計方法,數(shù)字信號處理中的有限字長效應(yīng),多抽樣率數(shù)字信號處理。《數(shù)字信號處理(第2版)(英文版)》配有多媒體電子課件、英文版教學(xué)大綱、習題指導(dǎo)與實驗手冊。
《數(shù)字信號處理(第2版)(英文版)》可以作為電子與通信相關(guān)專業(yè)的本科數(shù)字信號處理課程中英文雙語教學(xué)的教材,或中文授課的英文版教學(xué)參考書,也可供從事數(shù)字信號處理的工程技術(shù)人員學(xué)習參考。《數(shù)字信號處理(第2版)(英文版)》尤其適合初步開展數(shù)字信號處理課程中英文雙語授課的師生選用。
21世紀是國際化的知識經(jīng)濟時代,理工科教育已發(fā)生深刻的變化,各專業(yè)涉及的新理論與新技術(shù)發(fā)展日新月異,科技的創(chuàng)新在很大程度上已依賴于信息的及時獲取、準確理解和有效利用。當今,數(shù)字信號處理理論和算法的研究、應(yīng)用與實現(xiàn)技術(shù)的發(fā)展,以及其在現(xiàn)代信息與通信技術(shù)中的重要性和巨大潛力,已超越了初期人們所做的估計與預(yù)測。與此同時,社會對高素質(zhì)信息技術(shù)人才的需求對高等學(xué)校專業(yè)基礎(chǔ)課程的教學(xué)質(zhì)量提出了越來越高的要求,然而“數(shù)字信號處理”及其相關(guān)技術(shù)的基礎(chǔ)課程所能獲得的學(xué)時數(shù)反而在減少。有知名專家與學(xué)者將當今的教學(xué)改革難題歸結(jié)為:人類知識的無限積累與個人學(xué)習能力和時間的有限形成間日益尖銳的矛盾。
高等教育的國際化是當今教育與教學(xué)改革的必然趨勢,國際視野和國際交流能力已成為我國高等學(xué)校人才培養(yǎng)的一項基本要求。為適應(yīng)教學(xué)改革的新要求,我總結(jié)了“數(shù)字信號處理”教學(xué)與科研工作20余年所積累的經(jīng)驗與創(chuàng)新成果,并力圖繼承國內(nèi)老一代專家與學(xué)者編著的優(yōu)秀教材的知識體系結(jié)構(gòu)嚴謹、系統(tǒng)性強的特色與傳統(tǒng),參考了20余本國內(nèi)外一流或知名高等學(xué)校的優(yōu)秀教材,通過消化、吸收和創(chuàng)新,編寫了本書。2007年8月本書第1版由電子工業(yè)出版社出版。此后,本書在作者本人執(zhí)教的重慶大學(xué)通信工程學(xué)院本科數(shù)字信號處理課程雙語教學(xué)班連續(xù)使用了4屆。本書第1版于2010年已脫銷,由于作者工作繁忙,直至今日才進行修訂工作。
我在教材內(nèi)容的選擇、知識體系的組織和編排方面,做了慎重考慮——本書內(nèi)容要適應(yīng)我國高等學(xué)校的教學(xué)和課程設(shè)置的實際情況。面對數(shù)字信號處理知識內(nèi)容迅速擴展和學(xué)時數(shù)有限的實際情況,我在編寫過程中始終貫徹的基本思想是:使讀者系統(tǒng)地掌握離散時間信號與系統(tǒng)分析與設(shè)計的基本理論;在兩種常用的數(shù)字信號處理技術(shù)方面(基于DFT的連續(xù)時間信號的頻譜分析、IIR和FIR濾波器那樣的數(shù)字信號處理系統(tǒng)的設(shè)計),力求使讀者對分析與設(shè)計的原理和方法有較透徹的理解與掌握;在數(shù)字信號處理系統(tǒng)中的有限字長效應(yīng)和多抽樣率數(shù)字信號處理方面打下一定的基礎(chǔ);通過進一步自學(xué)或?qū)W習更加深入的后續(xù)課程,即可較容易地擴充數(shù)字信號處理的理論知識與實際技能。
基于我使用第1版作為教材的實際經(jīng)驗與體會,第2版保留了第1版中的主要內(nèi)容,以適應(yīng)目前本科教學(xué)的基本需要;壓縮了篇幅,以適應(yīng)學(xué)時數(shù)減少的實際情況;修正了第1版中的文字與公式符號錯誤,潤色了語句文字。具體修訂情況如下:
① 基于提高課堂教學(xué)效率和提高學(xué)生分析與解決問題能力的考慮,對第1版第2、3章中一些相對較簡單的例題進行了精簡。這些例題的題目被插入到相應(yīng)章的習題中,可以作為學(xué)生課后作業(yè)。
② 考慮到學(xué)時數(shù)有限的實際情況,而且第1版未介紹頻率抽樣濾波器設(shè)計的內(nèi)容,刪除原6.3.4節(jié)。
③ 基于方便教師檢驗課堂教學(xué)效果的考慮,刪除第1版附錄F課后習題參考答案。為方便學(xué)生自學(xué),課后習題參考答案可登錄華信教育資源網(wǎng)注冊下載。
蔡坤寶博士,重慶大學(xué)通信工程學(xué)院教授,信號與信息處理碩士學(xué)位點負貴人。長期從事信號與信息處理的教學(xué)與科研工作。近十余年來,積極探索和實施中英文雙語教學(xué),現(xiàn)任重慶大學(xué)大類系列課程“信號與系統(tǒng)”建設(shè)項目負責人,重慶市精品課程“信號與線性系統(tǒng)”負責人、國家級雙語教學(xué)示范課程“信號與系統(tǒng)”負責人,并承擔重慶市精品課程“數(shù)字信號處理”的建設(shè)工作。
1 introduction
1.1 what is a signal?
1.2 what is a system?
1.3 what is signal processing?
1.4 classification of signals
1.4.1 deterministic and random signals
1.4.2 continuous-time and discrete-time signals
1.4.3 periodic signals and nonperiodic signals
1.4.4 energy signals and power signals
1.5 overview of digital signal processing
2 discrete-time signals and systems
2.1 discrete-time signals: sequences
2.1.1 operation on sequences
2.2 basic sequences
2.2.1 some basic sequences
2.2.2 periodicity of sequences
2.2.3 representation of arbitrary sequences
2.3 discrete-time systems
2.3.1 classification of discrete-time systems
2.4 time-domain representations of lti systems
2.4.1 the linear convolution sum
2.4.2 interconnections of lti systems
2.4.3 stability condition of lti systems
2.4.4 causality condition of lti systems
2.4.5 causal and anticausal sequences
2.5 linear constant-coefficient difference equations
2.5.1 recursive solution of difference equations
2.5.2 classical solution of difference equations
2.5.3 zero-input response and zero-state response
2.5.4 the impulse response of causal lti systems
2.5.5 recursive solution of impulse responses
2.5.6 classification of lti discrete-time systems
problems
3 transform-domain analysis of discrete-time signals and systems
3.1 the z-transform
3.1.1 definition of the z-transform
3.1.2 a general shape of the region of convergence
3.1.3 uniqueness of the z-transform
3.2 relation between the rocs and sequence types
3.3 the z-transform of basic sequences
3.4 the inverse z-transform
3.4.1 contour integral method
3.4.2 partial fraction expansion method
3.4.3 long division method
3.4.4 power series expansion method
3.5 properties of the z-transform
3.6 the discrete-time fourier transform
3.6.1 definition of the discrete-time fourier transform
3.6.2 convergence criteria
3.6.3 properties of the discrete-time fourier transform
3.6.4 symmetry properties of the discrete-time fourier transform
3.7 transform-domain analysis of lti discrete-time systems
3.7.1 the frequency response of systems
3.7.2 the transfer function of lti systems
3.7.3 geometric evaluation of the frequency response
3.8 sampling of continuous-time signals
3.8.1 periodic sampling
3.8.2 reconstruction of bandlimited signals
3.9 relations of the z-transform to the laplace transform
problems
4 the discrete fourier transform
4.1 the discrete fourier series
4.2 properties of the discrete fourier series
4.2.1 evaluation of the periodic convolution sum
4.3 the discrete fourier transform
4.4 properties of the discrete fourier transform
4.4.1 circular convolution theorems
4.5 linear convolutions evaluated by the circular convolution
4.6 linear time-invariant systems implemented by the dft
4.7 sampling and reconstruction in the z-domain
4.8 fourier analysis of continuous-time signals using the dft
4.8.1 fourier analysis of nonperiodic continuous-time signals
4.8.2 practical considerations
4.8.3 spectral analysis of sinusoidal signals
problems
5 fast fourier transform algorithms
5.1 direct computation and efficiency improvement of the dft
5.2 decimation-in-time fft algorithm with radix-2
5.2.1 butterfly-branch transmittance of the decimation-in-time fft
5.2.2 in-place computations
5.3 decimation-in-frequency fft algorithm with radix-2
5.4 computational method of the inverse fft
problems
6 digital filter structures
6.1 description of the digital filter structures
6.2 basic structures for iir digital filters
6.2.1 direct form i
6.2.2 direct form ii
6.2.3 cascade form
6.2.4 parallel form
6.3 basic structures for fir digital filters
6.3.1 direct forms
6.3.2 cascade forms
6.3.3 linear-phase forms
problems
7 design techniques of digital iir filters
7.1 preliminary considerations
7.1.1 frequency response of digital filters
7.2 discrete-time systems characterized by phase properties
7.3 allpass systems
7.3.1 nonminimum-phase systems represented by a cascade connection
7.3.2 group delay of the minimum-phase systems
7.3.3 energy delay of the minimum-phase systems
7.4 analog-to-digital filter transformations
7.4.1 impulse invariance transformation
7.4.2 step invariance transformation
7.4.3 bilinear transformation
7.5 design of analog prototype filters
7.5.1 analog butterworth lowpass filters
7.5.2 analog chebyshev lowpass filters
7.6 design of lowpass iir digital filters
7.6.1 design of lowpass digital filters using the impulse invariance
7.6.2 design of lowpass digital filters using the bilinear transformation
7.7 design of iir digital filters using analog frequency transformations
7.7.1 design of bandpass iir digital filters
7.7.2 design of bandstop iir digital filters
7.7.3 design of highpass iir digital filters
7.8 design of iir digital filters using digital frequency transformations
7.8.1 lowpass-to-lowpass transformation
7.8.2 lowpass-to-highpass transformation
7.8.3 lowpass-to-bandpass transformation
7.8.4 lowpass-to-bandstop transformation
problems
8 design of fir digital filters
8.1 properties of linear phase fir filters
8.1.1 the impulse response of linear-phase fir filters
8.1.2 the frequency response of linear-phase fir filters
8.1.3 characteristics of amplitude functions
8.1.4 constraints on zero locations
8.2 design of linear-phase fir filters using windows
8.2.1 basic techniques
8.2.2 window functions
8.2.3 design of linear-phase fir lowpass filters using windows
8.2.4 design of linear-phase fir bandpass filters using windows
8.2.5 design of linear-phase fir highpass filters using windows
8.2.6 design of linear-phase fir bandstop filters using windows
problems
9 finite-wordlength effects in digital signal processing
9.1 binary number representation with its quantization errors
9.1.1 fixed-point binary representation of numbers
9.1.2 floating-point representation
9.1.3 errors from truncation and rounding
9.1.4 statistical model of the quantization errors
9.2 analysis of the quantization errors in a/d conversion
9.2.1 statistical model of the quantization errors
9.2.2 transmission of the quantization noise through lti systems
9.3 coefficient quantization effects in digital filters
9.3.1 coefficient quantization effects in iir digital filters
9.3.2 statistical analysis of coefficient quantization effects
9.3.3 coefficient quantization effects in fir filters
9.4 round-off effects in digital filters
9.4.1 round-off effects in fixed-point realizations of iir filters
9.4.2 dynamic range scaling in fixed-point implementations of iir filters
9.5 limit-cycle oscillations in realizations of iir digital filters
9.5.1 zero-input limit cycle oscillations
9.5.2 limit cycles due to overflow
9.6 round-off errors in fft algorithms
9.6.1 round-off errors in the direct dft computation
9.6.2 round-off errors in fixed-point fft realization
problems
10 multirate digital signal processing
10.1 sampling rate changed by an integer factor
10.1.1 downsampling with an integer factor m
10.1.2 decimation by an integer factor m
10.1.3 upsampling with an integer factor l
10.1.4 interpolation by an integer factor l
10.2 sampling rate conversion by a rational factor
10.3 efficient structures for sampling rate conversion
10.3.1 equivalent cascade structures
10.3.2 polyphase decompositions
10.3.3 polyphase realization of decimation filters
10.3.4 polyphase realization of interpolation filters
problems
appendix a tables for the z-transform
appendix b table for properties of the discrete-time fourier transform
appendix c table for properties of the discrete fourier series
appendix d table for properties of the discrete fourier transform
appendix e table for the normalized butterworth lowpass filters
references