《國外電子與通信教材系列:射頻微電子(第2版)(英文版)》側(cè)重系統(tǒng)級描述,綜合了無線通信電路系統(tǒng)描述、器件特性及單元電路分析,討論最新架構(gòu)、電路和器件。第1和第2章首先介紹射頻電子學(xué)基本概念和術(shù)語;第3章和第4章討論通信系統(tǒng)層的建模、檢測、多路存取等技術(shù)及無線標準;第5章討論無線前端收發(fā)器的結(jié)構(gòu)和集成電路的實現(xiàn),第6章到第9章詳細討論了低噪聲放大器和混頻器、振蕩器、頻率綜合器和功放器電路原理和分析方法。
導(dǎo)讀
RF Microelectronics一書的作者Behzad Razavi是美國加州大學(xué)洛杉磯分校終身教授,曾經(jīng)在美國貝爾實驗室和惠普實驗室從事多年的射頻電路設(shè)計工作,在射頻電路領(lǐng)域有數(shù)十年的科研和教學(xué)經(jīng)驗。本書的第一版于1998年問世,經(jīng)過不斷的再版和翻譯,成為射頻電路設(shè)計領(lǐng)域的經(jīng)典書籍。14年來,射頻電路設(shè)計領(lǐng)域發(fā)生了巨大的變化,高集成度的無線設(shè)備和寬帶的無線應(yīng)用,促使科研人員在收發(fā)信機結(jié)構(gòu)、電路形式及器件特性上,不斷推陳出新。而且,新的電路分析方法及建模技術(shù)的成熟,使科研人員對射頻電路的理解步入一個新的臺階。為反映這些變化,本書的第二版得以問世。
與舊版相比,新版在篇章結(jié)構(gòu)與具體內(nèi)容上都有顯著變化,兩者的內(nèi)容重合度在10%左右。在新版著作中,作者通過大量的設(shè)計實例和問題討論,幫助讀者在學(xué)習(xí)射頻電路整體分析方法的同時,了解射頻電路設(shè)計中可能遇到的細節(jié)問題。同時,在新版著作中,作者也更加強調(diào)如何幫助讀者掌握射頻電路設(shè)計的基本方法,為此作者還特別增加了一章,用于指導(dǎo)讀者如何一步一步地設(shè)計晶體管級的雙頻段WiFi收發(fā)信機。
本書的具體內(nèi)容可以概括如下。第2章介紹射頻電路設(shè)計中的基本概念,其中增加了雙端口網(wǎng)絡(luò)S參數(shù)的定義和計算實例,為本書后續(xù)章節(jié)的分析打下基礎(chǔ)。隨后,第3章對無線通信的基本概念進行闡述,重點介紹數(shù)字調(diào)制方式及其相應(yīng)的電路實現(xiàn)實例。第4章不僅介紹傳統(tǒng)經(jīng)典結(jié)構(gòu)的各類收發(fā)信機,同時基于作者對射頻電路最新發(fā)展趨勢的跟蹤,廣受關(guān)注的新型收發(fā)信機結(jié)構(gòu)也出現(xiàn)在新版著作中。值得一提的是,作者還通過問題討論等方式,結(jié)合802.11a/g等具體無線通信標準,講解了設(shè)計中需要注意的實際問題。本書的第5章至第12章,詳盡介紹了無線收發(fā)信機中的各個子模塊。與舊版相比,各子模塊的分類方式有顯著改進,作者也濃墨重彩地分析了各類新型模塊技術(shù),使讀者能夠及時地掌握射頻電路設(shè)計的新趨勢。新版還加入了無源器件的介紹與分析,使內(nèi)容更趨完整。本書的第13章是收發(fā)信機設(shè)計實例,如前所述,本章內(nèi)容是全書知識點的靈活運用,也是作者專注于設(shè)計方法傳授的點睛之筆。
本書的內(nèi)容體系基本涵蓋了國內(nèi)高校“通信基本電路”(亦稱“高頻電子線路”)專業(yè)基礎(chǔ)課程的教學(xué)內(nèi)容。但是,通過本人在上海交通大學(xué)電子工程系本科三年級的親身教學(xué)實踐(1學(xué)期64學(xué)時),發(fā)現(xiàn)本書與“通信基本電路”課程的教學(xué)大綱存在一定的不匹配之處。本書的內(nèi)容相對于本科階段的知識體系顯得內(nèi)容過于龐大,系統(tǒng)級的電路分析定性講解有余,而單元電路的定量分析不足。因此,本書更適合作為理工類大專院校電子類專業(yè)研究生的課程教材。如果作為理工類大專院校通信、電子類本科生雙語教學(xué)和全英文教學(xué)的教材,建議結(jié)合Thomas H. Lee的Design of CMOS Radio-Frequency Integrated Circuits(由電子工業(yè)出版社翻譯出版),以便于學(xué)生掌握單元電路基礎(chǔ)知識,為今后的科研打下扎實的基礎(chǔ)。本書內(nèi)容涵蓋無線收發(fā)信機各個模塊的介紹、分析和設(shè)計,并融入了Razavi教授數(shù)十年的電路設(shè)計經(jīng)驗,對從事射頻電路設(shè)計的專業(yè)技術(shù)人員而言,更是一本不可多得的必備書籍。
甘小鶯 副教授
上海交通大學(xué)電子工程系
CONTENTS
CHAPTER 1 INTRODUCTION TO RF AND WIRELESS TECHNOLOGY
1.1 A Wireless World
1.2 RF Design Is Challenging
1.3 The Big Picture
References
CHAPTER 2 BASIC CONCEPTS IN RF DESIGN
2.1 General Considerations
2.1.1 Units in RF Design
2.1.2 Time Variance
2.1.3 Nonlinearity
2.2 Effects of Nonlinearity
2.2.1 Harmonic Distortion
2.2.2 Gain Compression
2.2.3 Cross Modulation
2.2.4 Intermodulation
2.2.5 Cascaded Nonlinear Stages
2.2.6 AM/PM Conversion
2.3 Noise
2.3.1 Noise as a Random Process
2.3.2 Noise Spectrum
2.3.3 Effect of Transfer Function on Noise
2.3.4 Device Noise
2.3.5 Representation of Noise in Circuits
2.4 Sensitivity and Dynamic Range
2.4.1 Sensitivity
2.4.2 Dynamic Range
2.5 Passive Impedance Transformation
2.5.1 Quality Factor
2.5.2 Series-to-Parallel Conversion
2.5.3 Basic Matching Networks
2.5.4 Loss in Matching Networks
2.6 Scattering Parameters
2.7 Analysis of Nonlinear Dynamic Systems
2.7.1 Basic Considerations
2.8 Volterra Series
2.8.1 Method of Nonlinear Currents
References
Problems
CHAPTER 3 COMMUNICATION CONCEPTS
3.1 General Considerations
3.2 Analog Modulation
3.2.1 Amplitude Modulation
3.2.2 Phase and Frequency Modulation
3.3 Digital Modulation
3.3.1 Intersymbol Interference
3.3.2 Signal Constellations
3.3.3 Quadrature Modulation
3.3.4 GMSK and GFSK Modulation
3.3.5 Quadrature Amplitude Modulation
3.3.6 Orthogonal Frequency Division Multiplexing
3.4 Spectral Regrowth
3.5 Mobile RF Communications
3.6 Multiple Access Techniques
3.6.1 Time and Frequency Division Duplexing
3.6.2 Frequency-Division Multiple Access
3.6.3 Time-Division Multiple Access
3.6.4 Code-Division Multiple Access
3.7 Wireless Standards
3.7.1 GSM
3.7.2 IS-95 CDMA
3.7.3 Wideband CDMA
3.7.4 Bluetooth
3.7.5 IEEE802.11a/b/g
3.8 Appendix I: Differential Phase Shift Keying
References
Problems
CHAPTER 4 TRANSCEIVER ARCHITECTURES
4.1 General Considerations
4.2 Receiver Architectures
4.2.1 Basic Heterodyne Receivers
4.2.2 Modern Heterodyne Receivers
4.2.3 Direct-Conversion Receivers
4.2.4 Image-Reject Receivers
4.2.5 Low-IF Receivers
4.3 Transmitter Architectures
4.3.1 General Considerations
4.3.2 Direct-Conversion Transmitters
4.3.3 Modern Direct-Conversion Transmitters
4.3.4 Heterodyne Transmitters
4.3.5 Other TX Architectures
4.4 OOK Transceivers
References
Problems
CHAPTER 5 LOW-NOISE AMPLIFIERS
5.1 General Considerations
5.2 Problem of Input Matching
5.3 LNA Topologies
5.3.1 Common-Source Stage with Inductive Load
5.3.2 Common-Source Stage with Resistive Feedback
5.3.3 Common-Gate Stage
5.3.4 Cascode CS Stage with Inductive Degeneration
5.3.5 Variants of Common-Gate LNA
5.3.6 Noise-Cancelling LNAs
5.3.7 Reactance-Cancelling LNAs
5.4 Gain Switching
5.5 Band Switching
5.6 High-IP2 LNAs
5.6.1 Differential LNAs
5.6.2 Other Methods of IP2 Improvement
5.7 Nonlinearity Calculations
5.7.1 Degenerated CS Stage
5.7.2 Undegenerated CS Stage
5.7.3 Differential and Quasi-Differential Pairs
5.7.4 Degenerated Differential Pair
References
Problems
CHAPTER 6 MIXERS
6.1 General Considerations
6.1.1 Performance Parameters
6.1.2 Mixer Noise Figures
6.1.3 Single-Balanced and Double-Balanced Mixers
6.2 Passive Downconversion Mixers
6.2.1 Gain
6.2.2 LO Self-Mixing
6.2.3 Noise
6.2.4 Input Impedance
6.2.5 Current-Driven Passive Mixers
6.3 Active Downconversion Mixers
6.3.1 Conversion Gain
6.3.2 Noise in Active Mixers
6.3.3 Linearity
6.4 Improved Mixer Topologies
6.4.1 Active Mixers with Current-Source Helpers
6.4.2 Active Mixers with Enhanced Transconductance
6.4.3 Active Mixers with High IP
6.4.4 Active Mixers with Low Flicker Noise
6.5 Upconversion Mixers
6.5.1 Performance Requirements
6.5.2 Upconversion M
……
2.Bandwidth efficiency,i.e.,the bandwidth occupied by the modulated carrier for a given information rate in the baseband signal.This aspect plays a critical role in today's systems because the available spectrum is limited.For example,the GSM phone system provides a total bandwidth of 25 MHz for millions of users in crowded cities.The sharing of this bandwidth among so many users is explained in Section 3.6.
3.Power efficiency,i.e.,the type of power amplifier(PA)that can be used in the transmitter.As explained later in this chapter,some modulated waveforms can be processed by means of nonlinear power amplifiers,whereas some others require linear amplifiers.Since nonlinear PAs are generally more efficient(Chapter 12),it is desirable to employ a modulation scheme that lends itself to nonlinear amplification.
The above three attributes typically trade with one another.For example,we may suspect that the modulation format in Fig.3.3(b)is more bandwidth-efficient than that in Fig.3.3(a)because it carries twice as much information for the same bandwidth.This advantage comes at the cost of detectability-because the amplitude values are more closely spaced-and power efficiency-because PA nonlinearity compresses the larger amplitudes.
3.2 ANALOG MODULATION
If an analog signal,e.g.,that produced by a microphone,is impressed on a carrier,then we say we have performed analog modulation.While uncommon in today's high-performance communications,analog modulation provides fundamental concepts that prove essential in studying digital modulation as well.
3.2.1 Amplitude Modulation
For a baseband signal xBB(t),an amplitude-modulated(AM)waveform can be constructed as
xAM(t)= Ac(1+mxBB(t))cosωct,(3.2)
where m is called the"modulation index."Illustrated in Fig.3.4(a)is a multiplication method for generating an AM signal.We say the baseband signal is"upconverted."The waveform Ac cosωct is generated by a"local oscillator"(LO).Multiplication by cosωct in the time domain simply translates the spectrum of xBB(t)to a center frequency of ωc(Fig.3.4(b)).Thus,the bandwidth of xAM(t)iS twice that of xBB(t).Note that since XBB(t)has a symmetric spectrum around zero(because it is a real signal),the spectrum of xAM(t)is also symmetric around ωc.This symmetry does not hold for all modulation schemes and plays a significant role in the design of transceiver architectures(Chapter 4).
……