《Advanced Quantum Mechanics 高等量子力學(xué)》改編自作者在南京航空航天大學(xué)講授 10 年的高等量子力學(xué)講義, 內(nèi)容包括量子力學(xué)的數(shù)學(xué)基礎(chǔ)(即希爾伯特空間的基本性質(zhì))、量子力學(xué)公理、薛定諤方程的近似解法等, 課后的習(xí)題來自每年的作業(yè)和考題. 《Advanced Quantum Mechanics 高等量子力學(xué)》的一大特點(diǎn)是自成體系, 盡可能少地涉及本科階段相關(guān)知識(shí), 方便自學(xué).
《Advanced Quantum Mechanics 高等量子力學(xué)》適用于凝聚態(tài)、材料、光學(xué)等專業(yè)相關(guān)的學(xué)生使用, 《Advanced Quantum Mechanics 高等量子力學(xué)》內(nèi)容對(duì)應(yīng)約 80 課時(shí)的教學(xué)需要, 使用《Advanced Quantum Mechanics 高等量子力學(xué)》作為參考書的教師可根據(jù)自己的教學(xué)需求調(diào)整.
Contents
Preface
Chapter1MathematicalToolsofQuantumMechanics1
11TheHilbertSpace2
12DualSpacesandtheDiracNotation6
13Operators8
14Self-AdjointOperatorsandEigen-Problem12
15RepresentationinDiscreteBases21
16RepresentationinContinuesBases25
17MatrixandWaveFunction29
18DirectProductandDirectSum32
19Exercises36
Chapter2FundamentalsofQuantumMechanics39
21TheBasicPostulatesofQuantumMechanics40
22TheStateofaSystem41
23ObservablesandOperators43
24MeasurementinQuantumMechanics44
25TimeEvolutionoftheSystem'sState49
26SymmetriesandConservationLaws53
27StateOperator56
28ThreePicturesofQuantumMechanics68
29ConnectingQuantumtoClassicalMechanics69
210ApproximationMethodsI||TheVariationalMethod72
211ApproximationMethodsII||TheWKBMethod75
212Exercises85
Chapter3SecondQuantization90
31IdenticalParticles,Many-ParticleStatesandPermutationSymmetry91
32Bosons99
33Fermions103
34FieldTheory106
35MomentumRepresentation109
36NoninteractingFermions111
37GroundStateEnergyandElementaryTheoryoftheElectronGas115
38¤Hartree-FockEquationsforAtoms120
39FreeBosons122
310¤WeaklyInteracting,DiluteBoseGas125
ivContents
311Exercises131
Chapter4CoherentStatesandSqueezedStates138
41FourRepresentationsofQuantumStates139
42CoherentStates141
43TheQuasi-ClassicalInterpretationofCoherentStates145
44CoordinateRepresentationinTermsofDisplacementOperator148
45CoherentStatesVectorAlgebra150
46SqueezedStates153
47Exercises160
Chapter5Green'sFunctionsandScatteringTheory164
51Time-IndependentGreen'sFunctions164
52Time-DependentGreen'sFunctions176
53Green'sFunctionsandPerturbationTheory185
54ScatteringTheoryI|ScatteringOperatorsandBornApproximation193
55ScatteringTheoryII|PartialWave201
Chapter6GeometricPhases206
61Introduction207
62QuantalPhaseFactorsforAdiabaticChanges210
63AdiabaticApproximation214
64Berry'sAdiabaticPhase221
Bibliography227
Chapter 1
Mathematical Tools of Quantum Mechanics
Today quantum mechanics forms an important part of our understanding of physical phenom- ena. Its consequences both at the fundamental and practical levels have intrigued mathemati- cians, physicists, chemists, and even philosophers for the past century. A quantum system is usually described in terms of certain Hilbert spaces H and linear operators acting on these spaces. The mathematical properties and structure of Hilbert spaces are essential for a proper understanding of the formalism of quantum mechanics. For this, we are going to review brie°y the properties of Hilbert spaces and those of linear operators. We will then consider Dirac's bra-ket notation.
Quantum mechanics was formulated in two di.erent ways by Schr.odinger and Heisenberg. Schr.odinger's wave mechanics and Heisenberg's matrix mechanics are the representations of the general formalism of quantum mechanics in continuous and discrete basis systems, respectively.So we will also examine the mathematics involved in representing kets, bras, bra-kets, and operators in discrete and continuous bases.
Certain mathematical topics are essential for quantum mechanics, not only as computational tools, but because they form the most e.ective language in terms of which the theory can be formulated. We deal with the mathematical machinery needed to study quantum mechanics in this chapter. Although it is mathematical in scope, no attempt is made to be mathematically complete or rigorous. We limit ourselves to those practical issues that are relevant to the formalism of quantum mechanics. These topics include the theory of linear vector spaces and linear operators. A uniˉed theory based on that mathematical structure was ˉrst formulated by P. A. M. Dirac, and the formulation used in this book is really a modernized version ofDirac's formalism.